FLProg - система визуального программирования плат Arduino. Программирование Arduino с помощью ArduBloсk на примере робота, движущегося по полосе Визуальное программирование ардуино

07.08.2023

Сергей Глушенко

В настоящее время в мире начался бум по использованию микроконтроллеров в различных самоделках и стартапах. Действительно, цены на микроконтроллеры упали, а возможности их постоянно растут. Да и наши друзья, китайцы, научились изготавливать периферию к ним, и продают её к тому же по смешным ценам. Но вот с программированием микроконтроллеров всё не так радужно…

С чего всё началось и как развивалось

С самого момента появления микропроцессоров развитие принципов работы с ними идет по пути роста абстракции. Первый этап представлял программирование непосредственно в машинных кодах. Программирование было сложным, долгим и требовало очень специфичного склада ума. Поэтому программистов было очень мало.

Но человек существо ленивое, а лень, как известно, двигатель прогресса. Придумали первый уровень абстракции - ассемблер. Писать программы стало проще и веселее. Количество программистов возросло. Но все равно ассемблер не очень сильно отличался от машинных кодов.

Поэтому появился следующий уровень абстракции. Языки высокого уровня. Основной целью этих языков была возможность объяснить машине, что от нее хотят, на языке максимально приближенном к человеческому. Это позволяло заниматься программированием людям с менее специфичным складом ума. Поэтому с развитием языков высокого уровня количество программистов росло, и соответственно росло количество полезных программ, которые они создавали.

Как дела обстоят сейчас

Конечно, для начала работы непосредственно с контроллером требуется определенная подготовка. То есть, необходимы программатор, настроенная среда для программирования на компьютере, ну и, естественно, знание языка программирования. Кроме того, требуется умение в работе с паяльником, разработке печатных плат, знания в электротехнике и электронике. Так что порог вхождения в область создания собственных устройств на микроконтроллерах остается высоким.

Кроме того, для такой работы требуется сочетание навыков, которые достаточно редко встречаются вместе. Программисты редко дружат с паяльником, а электронщики не часто являются программистами. Для программистов проблему решили созданием платы Arduino, которая позволяет собирать устройства без использования инструментов.

Для электронщиков и электриков все хуже. До последнего времени для того, чтобы создать свое устройство с применением микроконтроллера, у них было два пути. Либо самим изучать язык программирования "С", либо просить помощи у программиста. Оба пути не самые лучшие. Для того что бы стать программистом, необходим определенный склад ума, не всегда совместимый с опытом чтения электрических схем. А знакомого программиста может не оказаться под рукой.

В то же время давно существуют среды программирования адаптированные под обычного инженера - электронщика, ну или просто электрика. Я имею в виду среды программирования промышленных контроллеров. ПЛК. Они позволяют создавать программное обеспечение для контроллеров на языках FBD и LAD . Собственно говоря, как таковыми языками они не являются. Это, скорее, графические среды для рисования принципиальных или логических схем.

FBD (Function Block Diagram)

- графический язык программирования стандарта МЭК 61131-3. Программа образуется из списка цепей, выполняемых последовательно сверху вниз. При программировании используются наборы библиотечных блоков. Блок (элемент) - это подпрограмма, функция или функциональный блок (И, ИЛИ, НЕ, триггеры, таймеры, счётчики, блоки обработки аналогового сигнала, математические операции и др.). Каждая отдельная цепь представляет собой выражение, составленное графически из отдельных элементов. К выходу блока подключается следующий блок, образуя цепь. Внутри цепи блоки выполняются строго в порядке их соединения. Результат вычисления цепи записывается во внутреннюю переменную либо подается на выход контроллера.

Ladder Diagram (LD, LAD, РКС)


- язык релейной (лестничной) логики. Синтаксис языка удобен для замены логических схем, выполненных на релейной технике. Язык ориентирован на инженеров по автоматизации, работающих на промышленных предприятиях. Обеспечивает наглядный интерфейс логики работы контроллера, облегчающий не только задачи собственно программирования и ввода в эксплуатацию, но и быстрый поиск неполадок в подключаемом к контроллеру оборудовании. Программа на языке релейной логики имеет наглядный и интуитивно понятный инженерам-электрикам графический интерфейс, представляющий логические операции, как электрическую цепь с замкнутыми и разомкнутыми контактами. Протекание или отсутствие тока в этой цепи соответствует результату логической операции (истина - если ток течет; ложь - если ток не течет). Основными элементами языка являются контакты, которые можно образно уподобить паре контактов реле или кнопки. Пара контактов отождествляется с логической переменной, а состояние этой пары - со значением переменной. Различаются нормально замкнутые и нормально разомкнутые контактные элементы, которые можно сопоставить с нормально замкнутыми и нормально разомкнутыми кнопками в электрических цепях.

Такой подход оказался очень удобным для легкого вхождения в разработку систем АСУ инженеров-электриков и электронщиков. Разрабатывая проекты установок, они могли легко привязать работу этих установок к алгоритмам работы контроллера. В обслуживании этих установок на объекте также лучше, когда существующий обслуживающий персонал может легко проверить работу системы АСУ, найти проблему. И при этом нет необходимости вызывать по каждому пустяку программиста из «Центра». И это подход себя оправдал. На сегодняшний день почти все системы промышленной автоматики созданы с помощью таких средств разработки.

Такая среда разработки есть у Siemens, ABB, Schneider Electric… да и практически у всех производителей ПЛК. Казалось бы, идеальное решение для любителей самоделок. Но, как всегда есть «но». Все эти среды программирования привязаны к промышленным контроллерам определённого производителя. И цены на эти контроллеры мало вдохновляют. Очень редко какой семейный бюджет позволит приобрести контроллер ценой в несколько десятков тысяч рублей.

Зато платы Arduino идеально подходят для самодельщиков и кулибиных, на которых наша страна всегда была, есть и будет богата. Но, опять «но». Программируются эти платы на языке C. Для большинства этих умнейших людей, с очень прямыми руками, растущими из положенного места, язык С. это китайская азбука. Они могут придумать, нарисовать, собрать, отладить и запустить сложнейшие схемы, но If, For, Case, Void и т.п. - это не для них. Конечно, можно почитать инструкции в интернете, поиграться какое-то время, помигать светодиодом с помощью примера. Но для более серьезного применения необходимо детальное изучение языка. А зачем им это?

Они не собираются быть профессиональными программистами. У них другой путь. Они что-то придумали. Да, это проще и красивее собрать с помощью микроконтроллера, но становится для этого программистом, потратив месяцы на изучение языка? Нет, конечно. Собирают по старинке, попроще, конечно, но в своей области.

На основании всех этих выкладок и был создан проект FLProg. Основная идея проекта - совместить принципы промышленного программирования с дешевизной и удобством Arduino. Проект предлагает новый уровень абстракции с довольно смелым заявлением -

Чтобы программировать микроконтроллеры не обязательно знать языки программирования!

В результате получился инструмент, позволяющий создавать свои проекты на Arduino любому человеку, знакомому с электротехникой и электроникой, позволяющий создать свое изделие с использованием данных плат.

Проект состоит из двух частей.

Первая часть -это десктоп-приложение FLProg , представляющее собой графическую среду программирования плат Arduino.

При создании нового проекта вам предложат выбрать язык программирования, на котором вы будете создавать проект, и контроллер, на котором этот проект будет реализован.

Вот список плат Arduino, поддерживаемых программой на сегодняшний день:

Arduino Diecimila
Arduino Duemilanove
Arduino Leonardo
Arduino Lilypad
Arduino Mega 2560
Arduino Micro
Arduino Mini
Arduino Nano (ATmega168)
Arduino Nano (ATmega328)
Arduino Pro Mini
Arduino Pro (ATmega168)
Arduino Pro (ATmega328)
Arduino Uno

В скором времени ожидается пополнение в семействе поддерживаемых плат. Arduino Due уже в пути, а плату Intel Galileo (gen.2) обещал предоставить руководитель лаборатории интернета вещей при Санкт-Петербургском Государственном университете телекоммуника-ций им. проф. М.А. Бонч-Бруевича. Со временем, по мере приобретения, планируется поддержка плат основанных на контроллерах STM.

Проект в FLProg представляет собой набор плат, на каждой из которых собран законченный модуль общей схемы. Для удобства работы каждая плата имеет наименование и комментарии. Так же каждую плату можно свернуть (для экономии места в рабочей зоне, когда работа над ней закончена) и развернуть. Красный индикатор в наименовании платы указывает на то, что в схеме платы есть ошибки.

В правой части рабочей зоны расположена библиотека элементов. В схему элементы переносятся простым перетаскиванием. При двойном клике по элементу будет показана информация о нём.

Вот список блоков доступных на сегодняшний день.

Базовые элементы



Специальные блоки

Триггеры



Таймеры


Счетчики


Математика



Алгебра




Сравнение

Com -порт

Send
SendVariable
ReceiveVariable

Переключатель


Моторы

ServoMotor
StepMotor

Часы реального времени


Дисплеи

Дисплей на чипе НD44780
Подсветка дисплея на чипе НD44780 I2C

Строки

Сложение строк

Датчики



SD карта

Запись переменной на SD карту
Выгрузка файла с SD карты

Конвертация типов

Преобразование строк

Микросхемы расширений

Расширитель выводов 74HC595

Операции с битами

Шифратор
Дешифратор
Чтение бита
Запись бита

Разное

Матричная клавиатура
Пьезодинамик

Запись в EEPROM
Чтение из EEPROM

Коммуникации

SendVariableFromCommunication
RessiveVariableFromCommunication
WebServerPage
WebClient

Базовые блоки

Контакт
Катушка
Защита от дребезга
Выделение переднего фронта

Специальные реле

Двустабильное реле
Реле времени
Генератор
Реле сравнения

Алгебра

SIN
COS
TAN
ABS
MAX
MIN
SQ
SQRT
POW
RANDOM

Аналоговые блоки

Масштабирование
Математика
Счетчик
Аналоговый переключатель
Переключатель много к одному
Переключатель один ко многим
Аналоговый вход контроллера
Аналоговый выход контроллера
Вход аналогового соединителя
Выход аналогового соединителя
Скоростной счетчик

CommPort

Передача в ComPort
Передача переменной через Comm port
Прием переменной через Comm port

Моторы

Сервомотор
Шаговый двигатель

Часы реального времени

Получить данные
Будильник
Установка времени

Дисплеи

Дисплей на чипе HD44780
Блок управления подсветкой дисплея на чипе HD4480 I2C
Блок декодирования семисегментного индикатора

Строки

Сложение строк

Датчики

Ультразвуковой дальномер HC-SR04
Датчик температуры и влажности DHT11 (DHT21, DHT22)
Датчик температуры DS18x2x
IR Ressive
BMP-085

SD карта

Запись переменной на SD карту
Выгрузка файла с SD карты

Конвертирование типов

Конвертация строк
Преобразование Float в Integer

Микросхемы расширений

Расширитель выводов 74HC595

Операции с битами

Шифратор
Дешифратор
Чтение бита
Запись бита

Разное

Матричная клавиатура
Пьезодинамик

Запись в EEPROM
Чтение из EEPROM

Коммуникации

Блок отправки переменной через коммуникации
Прием переменной через коммуникации
Страница Web сервера
Web клиент

В настоящее время ведется разработка функциональных блоков для работы с трех-осевым гироскопом, люксометром, и другими датчиками и сенсорами. Также ведется работа над организацией обмена данными через блютуз, радиоканал, и интерфейс RS-485. В дальнейших планах. разработка SCADA-системы для организации интерфейса систем, разработанных в программе FLProg на персональном компьютере или графических дисплеях.

Список периферийного оборудования, поддерживаемого программой, доступен на сайте проекта по ссылке:

Для части оборудования в разделе на сайте присутствуют обзорные статьи, облегчающие понимание применения его в программе.

В верхней части рабочей зоны расположен список тэгов (переменных и входов выходов) (FBD) или установленного оборудования (LAD). Тэги или оборудование переносятся на схему простым перетаскиванием.

После завершения работы над проектом производится его компиляция. После компиляции автоматически откроется программа "Arduino 1.5.7" с загруженным скетчем вашего проекта. В программе "Arduino IDE 1.5.7" вам необходимо будет указать номер COM -порта, к которому подключен ваш контроллер, выбрать его тип, и произвести заливку скетча в контроллер. Подробнее о программе "Arduino IDE 1.5.7" можно почитать на сайте Arduino.ru .

Где скачать FLProg?

В рамках проекта существует сайт http://flprog.ru . Основная задача сайта - дать возможность пользователям скачать последнюю версию программы, узнать о нововведениях и изменениях.

Скачать программу можно без регистрации на сайте, но для зарегистрированных пользователей функционал сайта заметно расширяется. Регистрация очень проста и требует только подтверждения электронной почты. Никаких других данных при этом вводить не требуется.

На странице загрузки программы всегда доступны две версии: инсталлятор и портативная версия, не требующая установки. Если возможно, то я также выкладываю файл обновления значительно меньшего размера, позволяющий обновить предыдущую версию.

Также на странице загрузки можно посмотреть список нововведений и исправленных ошибок для данной версии и перейти в архив предыдущих версий.

Начав статью с обзора существующих средств разработки программ для нашедших широкое применение в профессиональ­ных и любительских разработках микроконтроллерных модулей Arduino , автор подробно рассказывает об одной из них - FLProg , предназначенной для пользователей, специализирующихся в электротехнике и электронике, но не владеющих языками про­граммирования. Все предписанные программе действия изоб­ражают в этой системе наглядными и привычными для таких спе­циалистов условными графическими обозначениями.

Официальную среду разработки про­грамм для модулей Arduino предла­гают пользователям под названием Arduino IDE (рис. 1 ).

Программирова­ние в ней происходит на языке ProcesSing/Wiring - диалекте языка С (скорее, C++). Среда представляет собой, по сути, обычный текстовый редактор с возможностью трансляции текста про­граммы в машинные коды и их загрузки в микроконтроллер модуля. Альтерна­тива Arduino IDE - предназначенная для микроконтроллеров семейства AVR ин­тегрированная среда AVR Studio (рис. 2 ). Она служит для разработки и отладки программ на языке ассемблера, но к ней можно подключить и компилятор языка С. В 2006 г. она сменила название на Atmel Studio.

С появлением визуальных языков программирования на них охотно пере­ключились не только радиолюбители, но и многие профессионалы. Сущест­вующие средства разработки этого типа условно можно разделить на три вида:

FBD (Function Block Diagram) - гра­фический язык программирования стандарта МЭК 61131-3. Программа представляет собой список цепей, за­полняемый последовательно сверху вниз. Цепи образуют из библиотечных блоков. Блок (элемент) - это подпро­грамма, функция или функциональный блок (И, ИЛИ, НЕ, триггер, таймер, счёт­чик, блок обработки аналогового сигна­ла, математическая операция и т. д).

Каждую цепь составляют из отдель­ных блоков, подключая на экране ком­пьютера к выходу каждого блока вход следующего. Внутри цепи программа выполняет блоки строго в порядке их соединения. Результат, полученный на выходе последнего блока цепи, про­грамма записывает во внутреннюю пе­ременную или подаёт на выход контрол­лера. Пример визуального представле­ния программы на языке FBD показан на рис. 7 .

LAD (Ladder Diagram) - язык релей­ной (лестничной) логики, известный также под названиями LD и РКС.

Синтаксис этого языка удобен для опи­сания логических узлов, выполненных на релейной технике. Язык ориентиро­ван на специалистов по автоматике, ра­ботающих на промышленных предприя­тиях. Он обеспечивает наглядное ото­бражение логики работы контроллера, облегчающее не только собственно про­граммирование и ввод системы в эксплуатацию, но и быстрый поиск неполадок в подключаемом к конт­роллеру оборудовании. Программа на языке ре­лейной логики имеет на­глядный и интуитивно по­нятный инженеру-электрику вид, представляя логические операции в виде электрических цепей с замкнутыми и разомкнутыми контактами. Протекание или отсутствие тока в такой цепи соответствует результату логи­ческой операции (ток течёт - истина, ток не течёт - ложь). Пример схемы на языке LAD представлен на рис. 8 .

Основные элементы языка LAD - контакты, которые можно уподобить контактным парам реле или кнопок. Контактная пара отождествляется с логиче­ской переменной, а состояние этой пары - со значением пе­ременной. Различают нормаль­но замкнутые и нормально ра­зомкнутые контактные элемен­ты. Их можно сопоставить с нормально замкнутыми и нор­мально разомкнутыми кнопка­ми в электрических цепях.

Такой подход оказался очень удобным для лёгко­го вхождения инженеров-электриков в разработку систем автомати­ки. Разрабатывая проекты установок, они могут легко привязать их функ­ционирование к ал­горитмам работы контроллера. При обслуживании уста­новок на объекте очень важно, чтобы обслуживающий персонал мог легко проверить работу системы, найти и устранить проблему, не вызывая при этом по каждому пустяку программиста из «центра». Сегодня с помощью подобных средств разработки создают почти все системы промышленной автоматики.

Построенная на этих представлениях система разработки программ FLProg работает с микроконтроллерными модулями Arduino. Эти модули очень удобны для быстрой разработки и от­ладки устройств, что важно не только радиолюбителям, но и весьма полезно, например, в школьных кружках и в учеб­ных лабораториях. Одно из преиму­ществ - не требуется программатор. Достаточно подключить модуль Arduino к компьютеру и загрузить подготовлен­ную программу непосредственно из среды разработки.

В настоящее время существует бога­тый выбор как различных вариантов микроконтроллерных модулей Arduino (рис. 9 ), так и дополняющих их моду­лей, например, датчиков и исполнитель­ных устройств. Кроме того, в Интернете (например, на сайте http://robocraft.ru/ ) можно найти огромное число готовых проектов на основе этих модулей и адаптировать их под свои нужды.

В настоящее время система FLProg работает со следующими версиями мо­дулей: Arduino Diecimila, Arduino Duemila-nove, Arduino Leonardo, Arduino Lilypad, Arduino Mega 2560, Arduino Micro, Arduino Mini, Arduino Nano (ATmega168), Arduino Nano (ATmega328), Arduino Pro Mini, Arduino Pro (ATmega168), Arduino Pro (ATmega328), Arduino UNO. Недавно в списке появилась и плата Intel Galileo gen2. В дальнейшем предполагается пополнение и этого списка, возможно, и добавление модулей, основанных на микроконтроллерах STM.

Для создания FLProg был использован опыт программистов фирм Siemens, ABB, Schneider Electric и наработки в их средах программирования. При этом был не­сколько расширен классический функ­ционал языков для работы с промыш­ленными контроллерами путём добавле­ния функциональных блоков, отвечающих за работу с внешними устройствами. Программа работает на компьютерах под управлением ОС Windows и Linux.

Пользовательский интерфейс FLProg устроен так, что проект представляет собой набор виртуальных плат, на каж­дой из которых собран законченный модуль разрабатываемой системы. Каждая плата имеет наименование и снабжена комментариями. Для эконо­мии места в рабочей зоне её можно свернуть, если работа над ней законче­на, а при необходимости вновь развер­нуть и внести коррективы.

Красный индикатор у наименования платы на рис. 10 указывает на то, что в её схеме обнаружены ошибки. После ис­правления ошибок индикатор станет зелёным. Стрелка рядом с комментарием предназначена для свёртки изображения.

Правое окно рабочей области (рис. 11 ) отведено для библиотеки элементов. Добавить компонент в проект можно простым перетаскиванием, а двойной щелчок покажет информацию об эле­менте программы. Перечень блоков, предусмотренных в программе, их опи­сание и помощь по работе с програм­мой можно найти на интернет-странице . На интернет-странице имеется перечень периферийного оборудова­ния, поддерживаемого программой. Эти списки постоянно пополняются.

По мере развития программы плани­руется организация обмена информа­цией по Bluetooth, радиоканалу и интерфейсу RS-485, работа с трехосе­вым гироскопом, люксметром и други­ми датчиками. В дальнейших планах есть разработка SCADA-системы для доступа к системам, разработанным с помощью среды FLProg, с персональ­ного компьютера или мобильного уст­ройства.

Разработанную «принципиальную схему» FLProg переводит на язык Processing/Wiring. По завершении компи­ляции автоматически открывается про­грамма Arduino IDE с загруженным скет­чем проекта. В Arduino IDE необходимо указать COM-порт компьютера, к кото­рому подключён микроконтроллерный модуль, выбрать тип модуля и загрузить программу в его микроконтроллер.

Среду программирования FLProg можно адаптировать к программируе­мым логическим контроллерам, отли­чающимся от модулей Arduino, что поз­волит применять для работы с ними российское программное обеспечение.

ЛИТЕРАТУРА

  1. Создание Help-а для программы FLProg. - URL http://flprogwiki.ru/wiki/index.php?title=%D0%A1%D0%BE%D0%B7%D0%B4%D0%B0%D0%BD%D0%B8%D0%B5Help-%DO%BO%D0%B4%D0%BB%D1%8F_%D0%8F%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D1%8BFLProg (23.06 15).
  2. Применяемое в проекте оборудование. - URL

Ardublock


Графический Язык Программирования для Arduino

Руководство по использованию Ardublock Kit Ver 1.0

Что такое Ardublock

Ardublock это графический язык программирования для Arduino, предназначенный для непрограммистов и простой в использовании.

(напоминаем что программа в среде разработки Arduino IDE называется скетч)

Установка
Скачайте архив ardublock-all.jar
Откройте “Arduino IDE/Menu /Arduino/ Preferences”, там вы найдете строку “Sketchbook location”

3. Создайте папку “tools/ArduBlockTool/tool ” внутри папки “Arduino” в строке
“Sketch location” и скопируйте архив “ardublock-all.jar” в папку “tool”.

Если имя пользователя “abu,”

На Mac, /Users/abu/Documents/Arduino/tools/ArduBlockTool/tool/ardublock-all.jar

На Linux, /home/abu/sketchbook/tools/ArduBlockTool/tool/ardublock-all.jar

На Windows, C:\Users\abu\Documents\Arduino

4 Перезапустите Arduino IDE и у Вас должен появиться пункт “ArduBlock” в меню “Tool ”.

Обращайте внимание на написание названий папок прописными и строчными буквами.


Использование

Блоки ArduBlock разделены на несколько категорий.

Control
Блоки категории “Control” это управляющие блоки.

Цифры, константы и Переменные

Operators

Utilities

Эти блоки являются функциями, которые обычно используются в скетчах.

Bricks

Каждый блок данной категории изображает тип реального устройства, который вы можете напрямую подключить к вашему скетчу.

Pin

Эти блоки действуют как виртуальные контакты на плате Arduino.

Как программировать

1. Компиляция должна завершиться успешно. Если порт, указанный в среде Arduino или сама плата не обнаружены, то появляется окно с сообщением об ошибке.

2. Графические блоки с разъемами одинаковой формы можно соединить друг с другом.

Соединение устанавливается просто, для этого нужно перетащить один блок к тому, с которым Вы хотите его соединить.

3. Как только будет нажата кнопка “upload”, ArduBlock автоматически сгенерирует код Arduino который потом будет загружен на плату Arduino (при этом в окне скетчей среды разработки Arduino появится текст программы, полученной в ходе компиляции).

Как запустить программу

Простой вывод

1 Пример 1 — Здравствуй Мир (Hello World!)

1.1 Аппаратное подключение

Arduino подключается к выводу 13.

1.2 Функционирование

Светодиод будет мигать 1 раз в секунду.

1.3 Скетч

1.4 Загрузить

Примечание
Вы можете загрузить файл abp напрямую - все описанные здесь примеры можно скачать вместе с файлом описания среды Ardublock (на английском языке) в виде файлов графических скетчей с расширением abp.

Файл abp можно загрузить нажатием на кнопку «load».


После чего нужно указать скачанный файл и нажать кнопку «open».

2 Пример 2 — Сигнал тревоги

2.1 Аппаратное подключение


Digital Blue LED Light Module подключается к выводу 12.

2.2 Функционирование

Красный светодиод и синий светодиод будут загораться по очереди, как полицейская сирена. Эффект будет еще лучше, если вы накроете их полупрозрачной крышкой, или тканью.

2.3 Скетч

2.4 Загрузить

Простой ввод

3 Включает светодиод при нажатии кнопки

3.1 Аппаратное подключение

Digital White LED Light Module подключается к выводу 13.

3.2 Функционирование

Если нажата кнопка, загорается светодиод.

3.3 Скетч


3.4 Загрузить

4 Азбука Морзе

4.1 Аппаратное подключение

Digital RED LED Light Module подключается к выводу 13.
Digital Buzzer Module подключается к выводу 12.
Digital Push Button подключается к выводу 8.

4.2 Функционирование

Когда нажата кнопка, красный светодиод загорается и слышен звук. Период звучания похож на азбуку Морзе.

4.3 Скетч

4.4 Загрузить

Аналоговый ввод и вывод

5 Датчик вращения

5.1 Аппаратные установки

Analog Rotation Sensor V1 подключается к выводу A0.

5.2 Функционирование

В этой программе можно узнать значение угла поворота.
Когда Вы загрузите программу, Вы сможете переключиться на arduino IDE, нажмите на иконку монитора. Окна последовательного монитора покажут Вам угол поворота в значениях от 0 до 1023.

5.3 Скетч

5.4 Загрузить

6 Погасающий свет

6.1 Аппаратные установки

Digital White LED Light Module подключается к выводу 11.

6.2 Функционирование

Эта программа покажет вам как свет загорается и медленно угасает.

6.3 Скетч

6.4 Загрузить

7 Измерение шума 1

7.1 Аппаратные установки

Digital White LED Light Module подключается к выводу11.

7.2 Функционирование

Этот детектор может измерить уровень окружающего шума, светодиод будет светится сильнее, если звук громче.

7.3 Скетч


7.4 Загрузить

8 Измерение шума 2

8.1 Аппаратные установки

Digital White LED Light Module подключается к выводу 11.
Analog Sound Sensor подключается к выводу A0.

8.2 Функционирование

Этот детектор может измерить уровень окружающего шума, светодиод будет мигать быстрее, если звук громче.

8.3 Скетч


8.4 Загрузить

Этот урок дает минимальные знания, необходимые для программирования систем Ардуино на языке C. Можно только просмотреть его и в дальнейшем использовать как справочную информацию. Тем, кто программировал на C в других системах можно пропустить статью.

Повторю, что это минимальная информация. Описание указателей, классов, строковых переменных и т.п. будет дано в последующих уроках. Если что-то окажется непонятным, не беспокойтесь. В дальнейших уроках будет много примеров и пояснений.

Структура программы Ардуино.

Структура программы Ардуино достаточно проста и в минимальном варианте состоит из двух частей setup() и loop().

void setup() {

void loop() {

Функция setup() выполняется один раз, при включении питания или сбросе контроллера. Обычно в ней происходят начальные установки переменных, регистров. Функция должна присутствовать в программе, даже если в ней ничего нет.

После завершения setup() управление переходит к функции loop(). Она в бесконечном цикле выполняет команды, записанные в ее теле (между фигурными скобками). Собственно эти команды и совершают все алгоритмические действия контроллера.

Первоначальные правила синтаксиса языка C.

; точка с запятой Выражения могут содержать сколь угодно много пробелов, переносов строк. Признаком завершения выражения является символ ”точка с запятой ”.

z = x + y;
z= x
+ y ;

{ } фигурные скобки определяют блок функции или выражений. Например, в функциях setup() и loop().

/* … */ блок комментария , обязательно закрыть.

/* это блок комментария */

// однострочный комментарий , закрывать не надо, действует до конца строки.

// это одна строка комментария

Переменные и типы данных.

Переменная это ячейка оперативной памяти, в которой хранится информация. Программа использует переменные для хранения промежуточных данных вычислений. Для вычислений могут быть использованы данные разных форматов, разной разрядности, поэтому у переменных в языке C есть следующие типы.

Тип данных Разрядность, бит Диапазон чисел
boolean 8 true, false
char 8 -128 … 127
unsigned char 8 0 … 255
byte 8 0 … 255
int 16 -32768 … 32767
unsigned int 16 0 … 65535
word 16 0 … 65535
long 32 -2147483648 … 2147483647
unsigned long 32 0 … 4294967295
short 16 -32768 … 32767
float 32 -3.4028235+38 … 3.4028235+38
double 32 -3.4028235+38 … 3.4028235+38

Типы данных выбираются исходя из требуемой точности вычислений, форматов данных и т.п. Не стоит, например, для счетчика, считающего до 100, выбирать тип long. Работать будет, но операция займет больше памяти данных и программ, потребует больше времени.

Объявление переменных.

Указывается тип данных, а затем имя переменной.

int x; // объявление переменной с именем x типа int
float widthBox; // объявление переменной с именем widthBox типа float

Все переменные должны быть объявлены до того как будут использоваться.

Переменная может быть объявлена в любой части программы, но от этого зависит, какие блоки программы могут ее использовать. Т.е. у переменных есть области видимости.

  • Переменные, объявленные в начале программы, до функции void setup(), считаются глобальными и доступны в любом месте программы.
  • Локальные переменные объявляются внутри функций или таких блоков, как цикл for, и могут использоваться только в объявленных блоках. Возможны несколько переменных с одним именем, но разными областями видимости.

int mode; // переменная доступна всем функциям

void setup() {
// пустой блок, начальные установки не требуются
}

void loop() {

long count; // переменная count доступна только в функции loop()

for (int i=0; i < 10;) // переменная i доступна только внутри цикла
{
i++;
}
}

При объявлении переменной можно задать ее начальное значение (проинициализировать).

int x = 0; // объявляется переменная x с начальным значением 0
char d = ‘a’; // объявляется переменная d с начальным значением равным коду символа ”a”

При арифметических операциях с разными типами данных происходит автоматическое преобразование типов данных. Но лучше всегда использовать явное преобразование.

int x; // переменная int
char y; // переменная char
int z; // переменная int

z = x + (int) y; // переменная y явно преобразована в int

Арифметические операции.

Операции отношения.

Логические операции.

Операции над указателями.

Битовые операции.

& И
| ИЛИ
^ ИСКЛЮЧАЮЩЕЕ ИЛИ
~ ИНВЕРСИЯ
<< СДВИГ ВЛЕВО
>> СДВИГ ВПРАВО

Операции смешанного присваивания.

Выбор вариантов, управление программой.

Оператор IF проверяет условие в скобках и выполняет последующее выражение или блок в фигурных скобках, если условие истинно.

if (x == 5) // если x=5, то выполняется z=0
z=0;

if (x > 5) // если x >
{ z=0; y=8; }

IF … ELSE позволяет сделать выбор между двух вариантов.

if (x > 5) // если x > 5, то выполняется блок z=0, y=8;
{
z=0;
y=8;
}

{
z=0;
y=0;
}

ELSE IF – позволяет сделать множественный выбор

if (x > 5) // если x > 5, то выполняется блок z=0, y=8;
{
z=0;
y=8;
}

else if (x > 20) // если x > 20, выполняется этот блок
{
}

else // в противном случае выполняется этот блок
{
z=0;
y=0;
}

SWITCH CASE - множественный выбор. Позволяет сравнить переменную (в примере это x) с несколькими константами (в примере 5 и 10) и выполнить блок, в котором переменная равна константе.

switch (x) {

case 5:
// код выполняется если x = 5
break;

case 10:
// код выполняется если x = 10
break;

default:
// код выполняется если не совпало ни одно предыдущее значение
break;
}

Цикл FOR . Конструкция позволяет организовывать циклы с заданным количеством итераций. Синтаксис выглядит так:

for (действие до начала цикла;
условие продолжения цикла;
действие в конце каждой итерации) {

// код тела цикла

Пример цикла из 100 итераций.

for (i=0; i < 100; i++) // начальное значение 0, конечное 99, шаг 1

{
sum = sum + I;
}

Цикл WHILE . Оператор позволяет организовывать циклы с конструкцией:

while (выражение)
{
// код тела цикла
}

Цикл выполняется до тех пор, пока выражение в скобках истинно. Пример цикла на 10 итераций.

x = 0;
while (x < 10)
{
// код тела цикла
x++;
}

DO WHILE – цикл с условием на выходе.

do
{
// код тела цикла
} while (выражение);

Цикл выполняется пока выражение истинно.
BREAK – оператор выхода из цикла. Используется для того, чтобы прервать выполнение циклов for, while, do while.

x = 0;
while (x < 10)
{
if (z > 20) break; // если z > 20, то выйти из цикла
// код тела цикла
x++;
}

GOTO – оператор безусловного перехода.

goto metka1; // переход на metka1
………………
metka1:

CONTINUE - пропуск операторов до конца тела цикла.

x = 0;
while (x < 10)
{
// код тела цикла
if (z > 20) continue; // если z > 20, то вернуться на начало тела цикла
// код тела цикла
x++;
}

Массивы.

Массив это область памяти, где последовательно хранятся несколько переменных.

Объявляется массив так.

int ages; // массив из 10 переменных типа int

float weight; // массив из 100 переменных типа float

При объявлении массивы можно инициализировать:

int ages = { 23, 54, 34, 24, 45, 56, 23, 23, 27, 28};

Обращаются к переменным массивов так:

x = ages; // x присваивается значение из 5 элемента массива.
ages = 32; // 9 элементу массива задается значение 32

Нумерация элементов массивов всегда с нуля.

Функции.

Функции позволяют выполнять одни и те же действия с разными данными. У функции есть:

  • имя, по которому ее вызывают;
  • аргументы – данные, которые функция использует для вычисления;
  • тип данных, возвращаемый функцией.

Описывается пользовательская функция вне функций setup() и loop().

void setup() {
// код выполняется один раз при запуске программы
}

void loop() {
// основной код, выполняется в цикле
}

// объявление пользовательской функции с именем functionName
type functionName(type argument1, type argument1, … , type argument)
{
// тело функции
return();
}

Пример функции, вычисляющей сумму квадратов двух аргументов.

int sumQwadr (int x, int y)
{
return(x* x + y*y);
}

Вызов функции происходит так:

d= 2; b= 3;
z= sumQwadr(d, b); // в z будет сумма квадратов переменных d и b

Функции бывают встроенные, пользовательские, подключаемые.

Очень коротко, но этих данных должно хватить для того, чтобы начать писать программы на C для систем Ардуино.

Последнее, что я хочу рассказать в этом уроке, как принято оформлять программы на C. Думаю, если вы читаете этот урок в первый раз, стоит пропустить этот раздел и вернутся к нему позже, когда будет что оформлять.

Главная цель внешнего оформления программ это улучшить читаемость программ, уменьшить число формальных ошибок. Поэтому для достижения этой цели можно смело нарушать все рекомендации.

Имена в языке C.

Имена, представляющие типы данных, должны быть написаны в смешанном регистре. Первая буква имени должна быть заглавная (верхний регистр).

Signal, TimeCount

Переменные должны быть записаны именами в смешанном регистре, первая буква строчная (нижний регистр).

Рубрика: . Вы можете добавить в закладки.

Я рассказал о предыстории появления проекта FLProg. Сейчас я хочу поподробнее рассказать о проекте и его состоянии на сегодняшний день.
Основной целью проекта является включение в круг пользователей плат Arduino людей незнакомых с программированием. Это возможно благодаря опыту промышленного программирования, который накапливался годами производителями промышленных контроллеров.
Проект состоит из двух частей. Первая часть это десктоп приложение FLProg представляющее собой графическую среду программирования плат Arduino. Во вторых, это сайт FLProg.ru , с помощью которого члены сообщества пользователей программы могут пообщаться между собой, узнать последние новости проекта, скачать последнюю версию программы, ну и найти необходимую информацию по работе с приложением.

Начнем по порядку.
Программа FLProg позволяет создавать прошивки для плат Arduino с помощью графических языков FBD и LAD, которые являются стандартом в области программирования промышленных контроллеров.

Описание языка FBD

FBD (Function Block Diagram) - графический язык программирования стандарта МЭК 61131-3. Программа образуется из списка цепей, выполняемых последовательно сверху вниз. При программировании используются наборы библиотечных блоков. Блок (элемент) - это подпрограмма, функция или функциональный блок (И, ИЛИ, НЕ, триггеры, таймеры, счётчики, блоки обработки аналогового сигнала, математические операции и др.). Каждая отдельная цепь представляет собой выражение, составленное графически из отдельных элементов. К выходу блока подключается следующий блок, образуя цепь. Внутри цепи блоки выполняются строго в порядке их соединения. Результат вычисления цепи записывается во внутреннюю переменную либо подается на выход контроллера.


Описание языка LAD

Ladder Diagram (LD, LAD, РКС) - язык релейной (лестничной) логики. Синтаксис языка удобен для замены логических схем, выполненных на релейной технике. Язык ориентирован на инженеров по автоматизации, работающих на промышленных предприятиях. Обеспечивает наглядный интерфейс логики работы контроллера, облегчающий не только задачи собственно программирования и ввода в эксплуатацию, но и быстрый поиск неполадок в подключаемом к контроллеру оборудовании. Программа на языке релейной логики имеет наглядный и интуитивно понятный инженерам-электрикам графический интерфейс, представляющий логические операции, как электрическую цепь с замкнутыми и разомкнутыми контактами. Протекание или отсутствие тока в этой цепи соответствует результату логической операции (истина - если ток течет; ложь - если ток не течет). Основными элементами языка являются контакты, которые можно образно уподобить паре контактов реле или кнопки. Пара контактов отождествляется с логической переменной, а состояние этой пары - со значением переменной. Различаются нормально замкнутые и нормально разомкнутые контактные элементы, которые можно сопоставить с нормально замкнутыми и нормально разомкнутыми кнопками в электрических цепях.


Я немного расширил классический функционал этих языков, добавив функциональные блоки, отвечающие за работу с внешними устройствами. Они являются обертками, над библиотеками, предназначенными для работы с ними.
Проект в FLProg представляет собой набор плат, на каждой, из которой собран законченный модуль общей схемы. Для удобства работы каждая плата имеет наименование и комментарии. Так же каждую плату можно свернуть (для экономии места на рабочей зоне, когда работа над ней закончена), и развернуть. Красный индикатор в наименовании платы указывает на то, что в схеме платы есть ошибки.

Вид окна программы в режиме языка FBD

Вид окна программы в режиме языка LAD

Схема каждой платы собирается из функциональных блоков в соответствии с логикой работы контроллера. Большинство функциональных блоков имеют возможность настройки, с помощью которой их работу можно настроить в соответствии с необходимыми в данном конкретном случае требованиями.

Так же для каждого функционального блока есть развернутое описание, которое доступно в любой момент и помогает разобраться в его работе и настройках.

При работе с программой пользователю нет необходимости заниматься написанием кода, контролем за использованием входов – выходов, проверкой уникальности имен и согласованностью типов данных. За всем этим следит программа. Так же она проверяет корректность проекта целиком и указывает на наличие ошибок.
Для работы с внешними устройствами создано несколько вспомогательных инструментов. Это инструмент инициализации и настройки часов реального времени, инструменты для чтения адресов устройств на шинах OneWire и I2C а так же инструмент для чтения и сохранения кодов кнопок на ИК пульте. Все определённые данные можно сохранить в виде файла и в последующем использовать в программе.

Список функциональных блоков существующих на сегодняшний день в языке FBD

Базовые элементы



Специальные блоки

Тригеры



Таймеры


Счетчики


Математика



Алгебра






Сравнение

Com - Порт

Send
SendVariable
ReceiveVariable

Переключатель


Моторы

ServoMotor
StepMotor

Часы реального времени


Дисплеи

Дисплей на чипе НD44780
Подсветка дисплея на чипе НD44780 I2C

Строки

Сложение строк

Датчики



SD карта

Запись переменной на SD карту
Выгрузка файла с SD карты

Конвертация типов

Преобразование строк
Преобразование Float в Integer

Микросхемы расширений

Расширитель выводов 74HC595

Операции с битами

Шифратор
Дешифратор
Чтение бита
Запись бита

Разное

Матричная клавиатура

Список функциональных блоков существующих на сегодняшний день в языке LAD

Базовые блоки

Контакт
Катушка
Защита от дребезга
Выделение переднего фронта

Специальные реле

Двустабильное реле
Реле времени
Генератор
Реле сравнения

Алгебра

SIN
COS
TAN
ABS
MAX
MIN
SQ
SQRT
POW
RANDOM

Аналоговые блоки

Масштабирование
Математика
Счетчик
Аналоговый переключатель
Переключатель много к одному
Переключатель один ко многим
Аналоговый вход контроллера
Аналоговый выход контроллера
Вход аналогового соеденителя
Выход аналогового соединителя
Скоростной счетчик

ComPort

Передача в ComPort
Передача переменной через ComPort
Прием переменной через ComPort

Моторы

Сервомотор
Шаговый двигатель

Часы реального времени

Получить данные
Будильник
Установка времени

Дисплеи

Дисплей на чипе HD44780
Блок управления подсветкой дисплея на чипе HD4480 I2C
Блок декодирования семи сегментного индикатора

Строки

Сложение строк

Датчики

Ультразвуковой дальномер HC-SR04
Датчик температуры и влажности DHT11 (DHT21, DHT22)
Датчик температуры DS18x2x
IR Ressive
BMP-085